Future Armour materials and technologies for combat platforms
نویسندگان
چکیده
The ultimate goal of armour research is to create better armour for battle worthy combat plat forms such as main battle tanks, infantry combat vehicles and light combat vehicles. In each of these applications, the main aim boils down to one of the two things; either reduce the weight without sacrificing protection or enhance the performance at same or even reduced weight. In practice, these ambitions can be fulfilled only if we have with us, appropriate improved armour materials, advanced and innovative technologies and also improved designs, which enable us to use them for creating next generation armour modules. Armour systems have progressed through improvements in metallic, ceramic and lightweight (low areal density) composite materials. Similarly, the advances in development of explosive reactive armour (ERA) and non-explosive reactive armour (NERA) have generated efficient armour system against contemporary high explosive antitank ammunition and missile threats for the armoured vehicles. Yet, to achieve armour performance exceeding that of the current light combat vehicles and main battle tanks, further advancements in armour materials, systems, and survivability technologies are required for new vehicular systems that weigh significantly less than the present combat platforms. Various approaches and advancements in the metallic and composite armour materials, ERA and NERA systems to improve the survivability of armoured vehicles in the futuristic multi-spectral battlefield scenarios are described.
منابع مشابه
AD McLean. Burns and Military Clothing.
Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulderlaunched...
متن کاملAD McLean. Burns and Military Clothing.
Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulderlaunched...
متن کاملAD McLean. Burns and Military Clothing.
Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulderlaunched...
متن کاملExperimental and numerical analysis of stress wave propagation in polymers and the role of interfaces in armour systems
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid ...
متن کاملCombat Helmets and Blast Traumatic Brain Injury
Background: The conflicts in Iraq and Afghanistan and the prominence of traumatic brain injury (TBI), mostly from improvised explosive devices, have focused attention on the effectiveness of combat helmets. Purpose: This paper examines the importance of TBI, the role and history of the development of combat helmets, current helmet designs and effectiveness, helmet design methodology, helmet sen...
متن کامل